

TRAINING MATERIAL

www.amable.eu

27

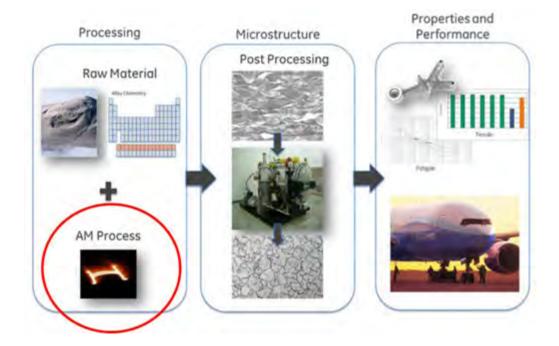
Index

01

Additive Manufacturing Processes Overview	
SCOPE	4
PROCESS DEFINED BY STANDARDS	5
DEFINITIONS	7
PROCESS FOR METAL	7
DIRECTED ENERGY DEPOSITION (DED)	8
ELECTRON BEAM	9
LASER BEAM	10
ARC	12
POWER BED FUSION	14
METAL AM-PROCESS COMPARISON	17
VAT PHOTOPOLYMERIZATION	18
SHEET LAMINATION	22
MATERIAL JETTING	24
BINDER JETTING	25

02

Value Chain in Additive Manufacturing


METAL EXTRUSION

ADDED VALUE BY AM	26
WHICH IS THE BEST AM PROCESS FOR	27
MY PRODUCT	21

O1 Additive Manufacturing Processes Overview

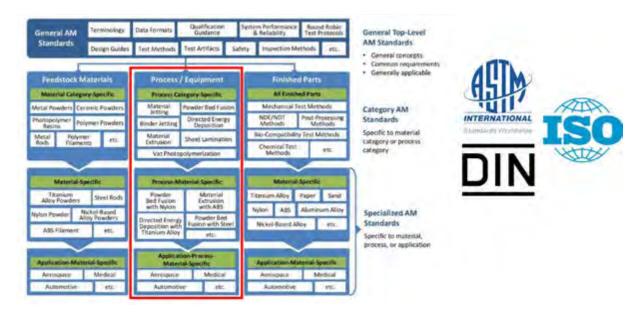
Scope

Additive Manufacturing (AM) is a manufacturing process that allows the construction of 3D parts by processing raw material in various forms (like powder, wire,...).

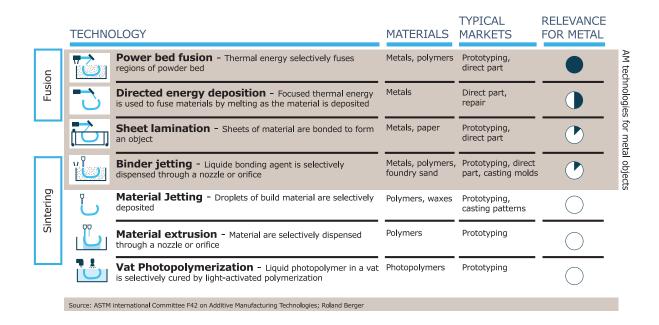
However, in many cases, to obtain the necessary microstructure that allows the achivement of desired performance and properties, it is necessary to do post-processing.

Knowledge

Actual and broad knowledge of theory, principles and applicability of:


- Directed energy deposition (DED)
- Powder bed fusion (PBF)
- Vat photopolymerization (VPP)
- Material jetting (MJT)
- Binder jetting (BJT)
- Material extrusion (MEX)
- Sheet lamination (SHL)

Objectives


- Distinguish parts produced by different AM processes
- Recognize the advantages and limitations of AM processes
- Identify the applicability of different AM processes
- Post-Processing can also be applied to achive the required surface quality.

Process Defined By Standards

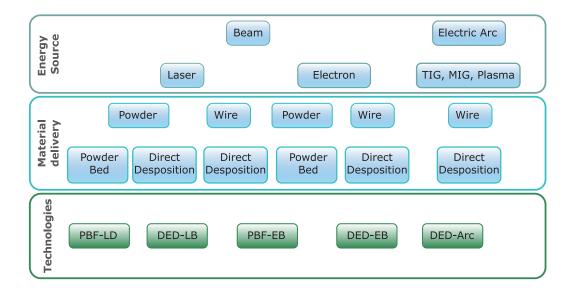
Additive Manufacturing Standards Structure

Additive Manufacturing Technologies

Definitions

The standard ISO/ASTM 52900-18 stands for Additive manufacturing - General principles - Terminology. It defines the basic terminology to be used for everything related to additive manufacturing.

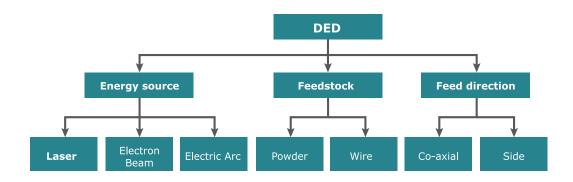
Additive Manufacturing (AM)

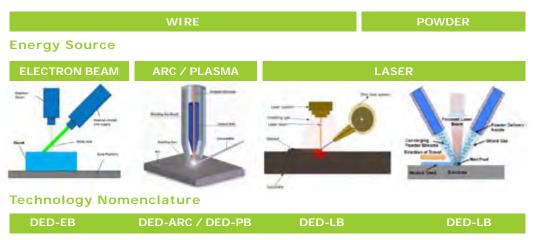

"process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies". Historical terms: additive fabrication, additive processes, additive techniques, additive layer manufacturing, layer manufacturing, solid freeform fabrication and freeform fabrication.

3D Printing

"fabrication of objects through the deposition of a material using a print head, nozzle, or another printer technology". Term often used in a non-technical context synonymously with additive manufacturing; until present times this term has in particular been associated with machines that are low end in price and/or overall capability.

Process for Metals


Classification Directed Energy Deposition and Powder Bed Technologies


Directed Energy Deposition (DED)

General Classification

Additive manufacturing process in which focused thermal energy is used to fuse materials by melting as they are being deposited (ISO/ASTM 52900-18). "Focused thermal energy" means that an energy source (for example: laser, electron beam, or plasma arc) is focused to melt the materials being deposited.

Feedstock

Electron Beam

Advantages

- Higher deposition rate
- Large pieces (larger manufacturing space)
- Materials difficult to weld
- Reactive metals (Ti, Al, TiAl)
- Wire material (cheap, inflammable)
- High energy efficiency (> 95%, x5-10 LPBF)
- Minor residual stress
- Lower support requirements

Applications & Sectors

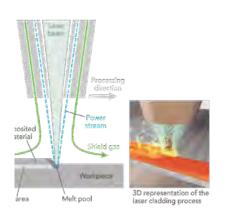
- Turbine Blades
- Nuclear Components
- Refractory Metal Components
- Ballistic Materials
- Industrial Pump Components
- Semiconductor Manufacturing
- Tooling Repair and Reconditioning
- Aero components

Disadvantages

- Big and complex equipment
- High cost investment
- High cost maintenance equipment
- Vacuum chamber needed
- Higher roughness (Ra> 40μm) (x3 LPBF)

Photo: Lockheed Martin

Materials


- Steel, 4340
- · Stainless Steel
- Titanium and Titanium alloys, Ti64
- Aluminum, 2319, 4043
- Tantalum
- Tungsten
- Niobium
- Inconel 718, 625
- Cobalt-chrome ASTM F75
- TiAl
- Pure copper

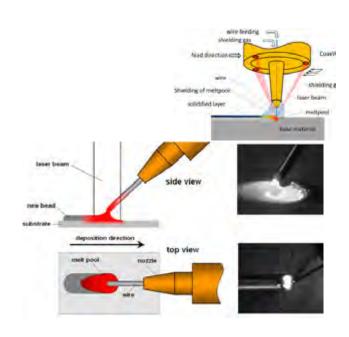
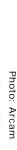


Photo: GE Addit

Directed Energy Deposition (DED)

Laser Beam


Advantages

- Medium to High deposition rate
- Medium size parts
- near-net shape components
- Wide range of materials
- Multi-material and FGMs
- Repair and remanufacturing

Disadvantages

- Equipment cost
- Low resolution
- Needs of post-processing

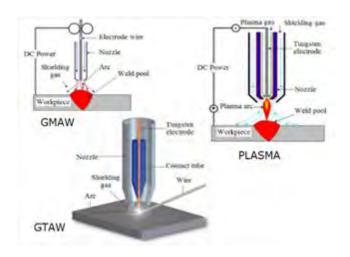
Applications & Sectors

- Turbomachinery
- Aero components
- Molds and Tooling
- Automotive
- Subsea and offshore

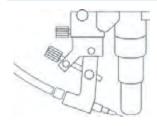
- Steels
- Ni-based alloys
- Co-based alloys
- Titanium
- Carbides

Directed Energy Deposition (DED)

Arc


DED - Arc

- GMAW and TIG processes
- Feeding of wire
- Low priced technical setup
- Deposition rates up to 5 kg/h and over
- Little material loss compared to powder based technologies



DED - Plasma Beam

- Plasma and μ -Plasma processes
- Feeding of powder or wire
- Deposition rates up to 10 kg/h
- Powder availability and over spray

Steps

1. Fusion

2. Layer Deposition

3. Solid Part Deposit

Advantages

- High deposition rate
- High size parts
- Good buy-to-fly ratio
- Reduced cost for equipment
- Wide range of materials
- Reduced costs for wires

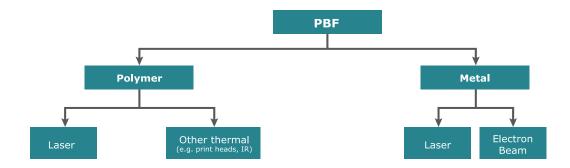
Disadvantages

- Lower resolution
- Geometric distortions
- Needs of post-processing

Photo: Norsk Titanium

Applications & Sectors

- Naval
- Aero components
- Energy
- · Molds and Tooling


- Steels
- · Ni-based alloys
- Titanium
- Aluminum

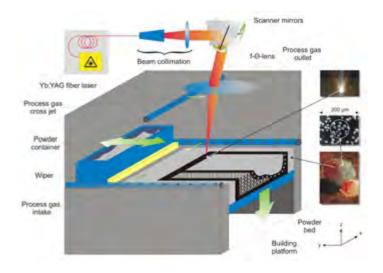
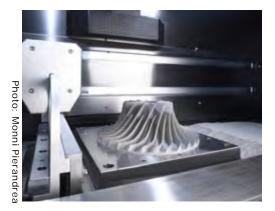



Photo: RamLab

Powder Bed Fusion

Additive manufacturing process in which thermal energy selectively fuses regions of a powder bed (ISO/ASTM 52900-18)



Advantages

- Innovation in designs and improved functionalities
- Integration of several pieces in one
- Lightening in weight, less use of raw material, less material waste (green technology)
- Individualization and complexity without added cost
- High range of Materials (weldable materials)

Applications & Sectors

- Aero components
- Orthopedic implants
- Automotive
- Tooling (Molds and dies)
- Dental
- Goods

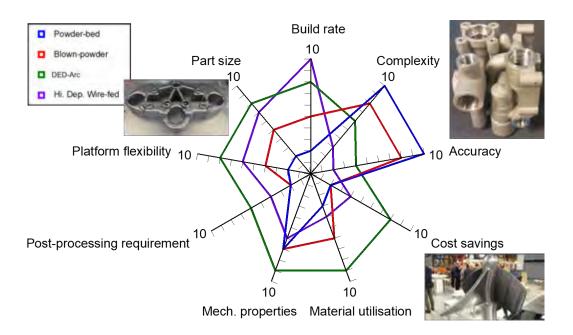
Disadvantages

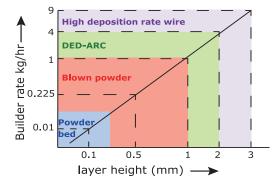
- Medium roughness (Ra> 10μm)
- Limited parts size (< 400x400x500mm)
- Equipment cost
- Residual stresses and distortions in some cases
- Low to Medium Productivity: currently series of small pieces (up to 25000 parts/year)

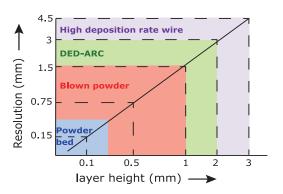
Materials

- Aluminum (AlSi7Mg, AlSi9Cu3)
- Nickel (IN718, IN725, IN939, HX)
- Titanium (grade 2, grade 23)
- Cobalt-chrome (F75, CoCr28Mo6)
- Steel (316L, 17-4PH, 1.2709, H13, Invar36)
- Copper (CuSn10)

רוסנס. באסות




Photo: Materialise

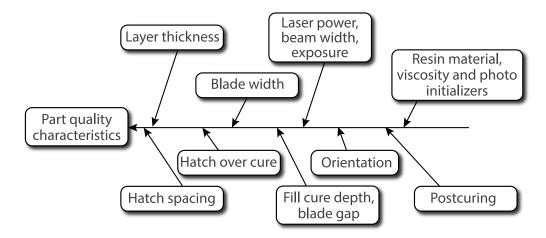

Metal AM

Process Comparison

Additive manufacturing process in which thermal energy selectively fuses regions of a powder bed (ISO/ASTM 52900-18)



Vat Photopolymerization

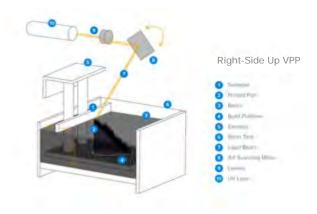

Additive manufacturing process in which liquid photopolymer in a vat is selectively cured by light-activated polymerisation (ISO/ASTM 52900-18)

Process

- Monomer and oligomer chains have active groups at their end
- When resin is exposed to UV the Photoinitiator molecule breaks into two
- 2 very reactive radicals
- Reactive radicals are transferred to active groups which then react with other groups

Parameters

Accuracy


General accuracy of VPP prints is 50 to 200 microns depending on size, resin, model geometry and support generation.

Machine Types

Top-down (top-cure)

- heat source above the vat
- platform is progressively dipped in the vat
- Large industrial applications
- Build volume: Up to 1500x750x550mm3

Bottom-up (bottom-cure)

- heat source is placed below the vat
- platform is progressively raised
- The UV laser points at two mirror
- galvanometers, which direct the light to the correct
- coordinates on a series of mirrors
- the final part built upside down
- Build volume: Up to 145x145x175mm3

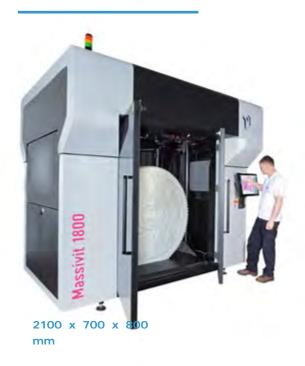
Machine Examples

Additive manufacturing process in which liquid photopolymer in a vat is selectively cured by light-activated polymerisation (ISO/ASTM 52900-18)

Formlabs

145 x 145 x 175 mm

3D Systems


1500 x 750 x 550

Envisiontec

400 x 400 x 400 mm

Materialise

Machine Cost Comparison

General accuracy of VPP prints is 50 to 200 microns depending on size, resin, model geometry and support generation.

	Desktop SLA: Inverted	Industrial SLA: Right-Side Up		
Price	Starting at \$3500	\$80,000-\$1,000,000+ Up to 1500 x 750 x 550 mm		
Print Volume	Up to 145 x 145 x 175 mm			
Pros	AffordableEasy to useLow maintanceSmall footprintEasy material swapping	Large build volumehigh production rateExtensive materials options		
Cons	Medium build volume	Expensive machineryHigh maintanceOperator required		

Advantages

- Design freedom;
- Geometric models with great surface quality;
- Fast process;
- Reduced cost equipment;
- Part isotropy is possible.

Applications & Sectors

- Rapid Prototyping;
- Dental;
- Healthcare;
- Impellers and rotating devices;
- Enclosures;
- Investment casting.

Disadvantages

- Low range of materials available (UV curable resins);
- Support structures required;
- Material degradation with continued exposure to light;
- Low working temperatures for components;
- Some resins are toxic.

Materials

 Resin, typically composed of epoxy or acrylic and methacrylic monomers, will polymerize and harden when exposed to light

Feedstock Form

 Liquid or Paste (photoreactive resin with or without filler material)

Processing Operations (Top-Cure, Industrial)

The build platform is first positioned in the tank of liquid photopolymer, at a distance of one-layer height from the surface of the liquid.

Then a UV laser creates the next layer by selectively curing and solidifying the photopolymer resin.

The whole cross-sectional area of the model is scanned, so the produced part is fully solid.

When a layer is finished, the platform moves at a safe distance and the sweeper blade re-coats the surface. The process then repeats until the part is complete.

After printing, the part is in a green, no-fully-cured state and requires futher post processing under UV light if very high mechanical and thermal properties are required.

Sheet Lamination

Additive Manufacturing process in which sheets of material are bonded to form an object (ISO/ASTM 52900-18)

Processable Materials

- Polymers;
- Metals;
- Composites;
- Ceramics;
- Paper.

Polymers

- Interlayer adhesion achieved through heat/glue
- Cutting performed by laser/blade
- Can create coloured parts
- Typically for prototyping applications

Metal-Ultrasonic Consolidation

- Solid state weld between 'foils'
- Multi material capability
- Ability to embed parts (low temperature)

Advantages

- · High velocity
- Non-existence of residual stress
- Wide range of Materials

Applications & Sectors

- Architectural models
- Topography visualization
- Aerospace and automotive industries

Disadvantages

- Post-Processing are required to achieve required effect
- Finishes can vary depending on paper or plastic material but may require post processing to achieve desired effect

Feedstock Form

 Sheet material, paper, metal foil, polymers or composites (metal or ceramic poder, helded by a binder)

Processing operations (plastics)

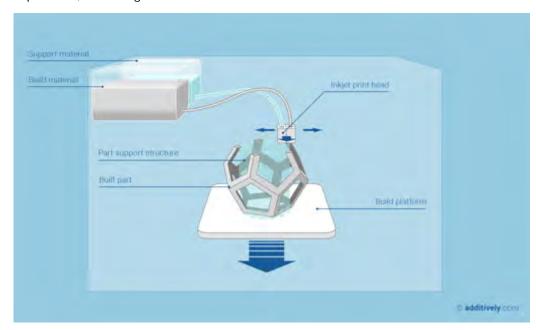
1.

Material is positioned in place on the cutting bed.

2.

 $\label{eq:material} \mbox{Material is bonded in place, over the previous layer, using the adhesive}$

3.


Required shape is then cut from the layer, by laser or knife, and next layer is added.

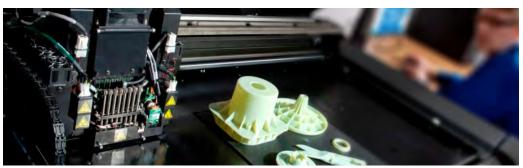
4.

Material Jetting

"Additive manufacturing process in which droplets of feedstock material are selectively deposited.", according to ISO/ASTM 52900-18

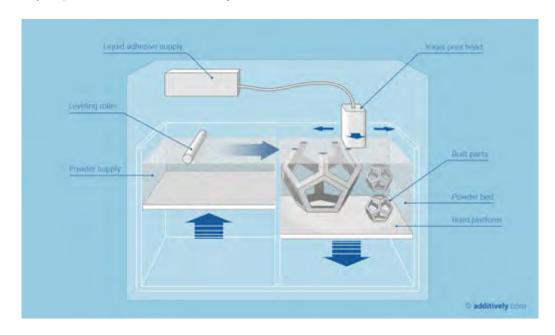
Advantages

- Fast process
- Small medium parts
- Good accuracy (typically ± 0.1%)
- Allows mixture of colors and properties
- Soft and Hard Materials
- No post-processing required
- Reduced cost equipment


Applications & Sectors

- Rapid Prototyping
- Dental
- Healthcare
- Prosthesis

Disadvantages


· Reduced resistance

- UV-photosensitive resins
- Acrylic photopolymers (thermoset)

Binder Jetting

"Additive manufacturing process in which a liquid bonding agent is selectively deposited to join powder materials", according to ISO/ASTM 52900-18

Advantages

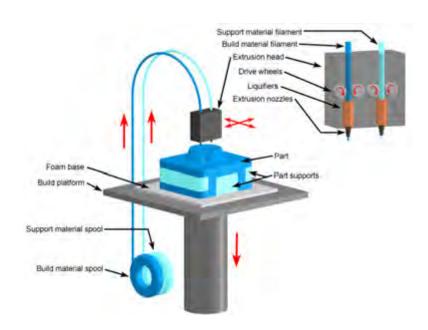
- X50-100 faster than PBF
- X20 lower cost than PBF
- No supports are required
- Suitable for great complexity parts and large series
- Good resolution

Disadvantages

- Limited size (<400x300x200 mm)
- Various processes for final part (print, debinder, sinter)
- Complex manipulation of green parts
- Contraction control during sintering
- Limited wall thickness (5-10 mm)

Applications & Sectors

- Precision engineering
- Automotive
- Prototyping
- Medical


- Steels
- Nickel-based metals
- CobaltChrome alloys
- · Wolfram, WolframCarbide

Material Extrusion

"Additive manufacturing process in which material is selectively dispensed through a nozzle or orifice ", according to ISO/ASTM 52900-18

Advantages

- Wide selection of print material (plastics)
- Easy and user-friendly process (FDM)
- Low initial and running costs
- Small equipment size compared to other AM
- Lower production costs (in Metals)
- Suitable for small, highly complex parts (50 mm)
- · Suitable for small series part

Applications & Sectors

- Rapid Prototyping
- Automotive
- Healthcare

Disadvantages

- Toxic print materials (some thermoplastics)
- Sintered shrinkage (in metals)
- Limited wall thickness (in metals: 5-10 mm)

- Thermo Plastics (PLA, ABS, PC)
- Composite material (Plastic reinforced)
- Metals (Steel, Cu, Inco625)

02 Value Chain In AM

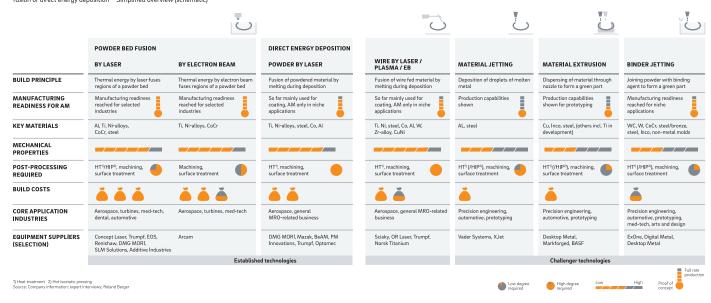
The value chain here spans across activities from research to market, along a process to generate and add value. For additive manufacturing, significant value is generated at design stage, when geometries are defined and when the build process is determined.

Pre-manufacturing processes **Manufacturing processes** Design & Post-processing Equipment nanufacturing Subsegments · CAD/CAM Thermoplastics • Industrial • Sawing/EDM · One-off parts · Data preparation tools • Photopolymers Desktop + HIP • FEA/simulation tools · Heat treatment Metal alloys (Ti, Ni, steel, CoCr, Alsi) · Serial parts Machining · CPD/MBD Surface treatment Machine/process controls and systems • Quality inspection

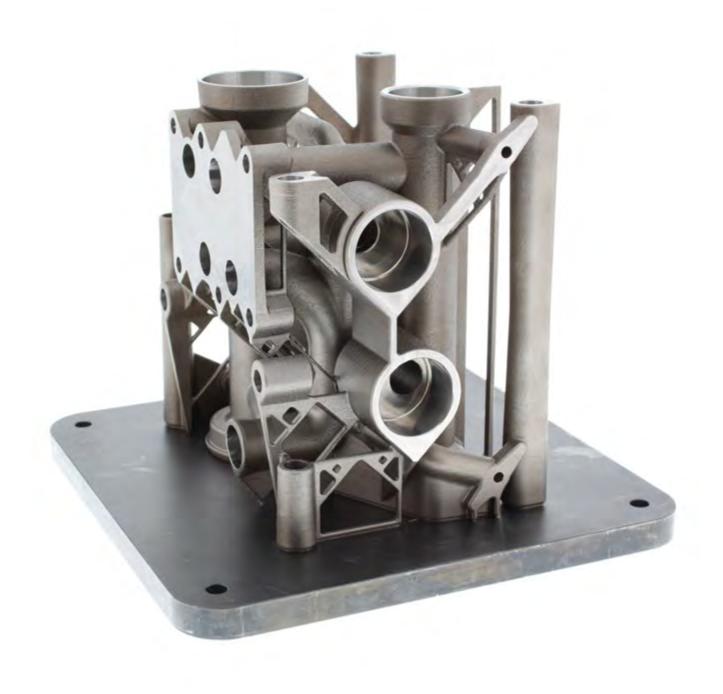
AM value chain

Notes: FEA = Finite element analysis; CPD = Composites part design; MBD = Madel-based definition; EDM = Electrical discharge machining; HIP = Hot isostatic pressing Source: L.E.K. analysis

Added Value By AM


Added value: set of additional product or service characteristics which make them more attractive for the customer against the competence

- Customization
- · In-situ and on-demand production (without stocks)
- Minimum time to market
- Sustainability and energy efficiency
- Differential design
- Design improvement:
 - Integration of functionalities or multiple parts into one part
 - · Light weight design to leave only material that is needed
- Cost improvement:
 - Small lots
 - High cost materials


Which Is The Best AM Process For My Product?

		Additve TECHNO	manufacturing technologies DLOGY	MATERIALS	TYPICAL MARKETS	RELEVANCE FOR METAL	
	on	7	Power bed fusion - Thermal energy selectively fuses regions of powder bed	Metals, polymers	Prototyping, direct part		AM tech
	Fusion	7	Directed energy deposition - Focused thermal energy is used to fuse materials by melting as the material is deposited	Metals	Direct part, repair		AM technologies
			Sheet lamination - Sheets of material are bonded to form an object	Metals, paper	Prototyping, direct part		
Г			Binder jetting - Liquide bonding agent is selectively dispensed through a nozzle or orifice	Metals, polymers, foundry sand	Prototyping, direct part, casting molds		for metal objects
	Sintering		Material Jetting - Droplets of build material are selectively deposited	Polymers, waxes	Prototyping, casting patterns		■ 03
Sir	Si		Material extrusion - Material are selectively dispensed through a nozzle or orifice	Polymers	Prototyping		
			Vat Photopolymerization - Liquid photopolymer in a vat is selectively cured by light-activated polymerization	Photopolymers	Prototyping		
		Source: ASTM	international Committee F42 on Additive Manufacturing Technologies; Roland Berger				

Established and challenger technologies for metal AM Several new metal AM technologies are emerging alongside powder bed fusion or direct energy deposition – Simplified overview (schematic)

29

AMable

About

AMable is a group of people from different organisations that aim to create a new eco-system for the uptake of additive manufacturing. Those people provide a wide based of expertise from technology, business and training. The European Commission supports this consortium under the framework of I4MS with funding from the H2020 framework program and with guidance towards an open platform for European companies.

The prime target group are small and medium sized companies (SMEs) that need support in the uptake of additive manufacturing. AMable aims to empower people in those companies to enhance their skills rather than doing the job for the people. The eco-system however will develop a wide spread offering from scientific support through skills and education to commercial service offers.

Contact:

projectoffice@amable.eu

www.amable.eu

Coordination

Fraunhofer Institute for Laser Technology ILT c/o Ulrich Thombansen +49/241/8906-320 ulrich.thombansen@ilt.fraunhofer.de

Get in touch with us.

projectoffice@amable.eu

Coordination
Fraunhofer Institute for Laser Technology ILT
c/o Ulrich Thombansen
+49/241/8906-320
ulrich.thombansen@ilt.fraunhofer.de

© AMable Project Consortium 2020, v1.0 Lead Editors Ana Cardoso (EWF), Pedro Alvarez (LORTEK)

AMable as a project is co-funded by the European Union's Horizon 2020 research and innovation program under grant agreement 768775

www.amable.eu

